National Academy of Sciences of Ukraine

National Scientific Centre for Medical and Biotechnical Research

Laboratory of Mathematical Modeling of Nonlinear Processes

15 Bogdana Khmelnytskogo Str, room 401
Kyiv, 01601, Ukraine
Phone: 380-(44)-239-6692
Fax: 380-(44)-234-8356

Recent Publications:

Experimental multistable states for small network of coupled pendula.

Dawid Dudkowski, Juliusz Grabski, Jerzy Wojewoda, Przemyslaw Perlikowski, Yuri Maistrenko and Tomasz Kapitaniak.

Scientific reports 6, 29833 (2016), doi:10.1038/srep29833

Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization, can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton’s laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems.

Delayed-feedback chimera states: Forced multiclusters and stochastic resonance

V. Semenov, A. Zakharova, Y. Maistrenko and E. Schöll

EPL, 115 (2016) 10005, doi: 10.1209/0295-5075/115/10005

A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper–like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

Chimera States in Three-Dimensions

Yuriy Maistrenko, Oleksandr Sudakov, Oleksiy Osiv, Volodymyr Maistrenko
New Journal of Physics, vol. 17, 073037 (2015)  doi:10.1088/1367-2630/17/7/073037

The chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. In this paper, the first evidence of three-dimensional chimera states is reported for the Kuramoto model of phase oscillators in 3D grid topology with periodic boundary conditions. Systematic analysis of the dependence of the spatiotemporal dynamics on the range and strength of coupling shows that there are two principal classes of the chimera patterns which exist in large domains of the parameter space: (I) oscillating and (II) spirally rotating. Characteristic examples from the first class include coherent as well as incoherent balls, tubes, crosses, and layers in incoherent or coherent surrounding; the second class includes scroll waves with incoherent, randomized rolls of different modality and dynamics. Numerical simulations started from various initial conditions indicate that the states are stable over the integration time. Videos of the dynamics of the chimera states are presented in supplementary material. It is concluded that three-dimensional chimera states, which are novel spatiotemporal patterns involving the coexistence of coherent and incoherent domains, can represent one of the inherent features of nature.

Laser Chimeras as a paradigm for multi-stable patterns in complex systems

Laurent Larger, Bogdan Penkovsky, Yuri Maistrenko
Nature Communications 6, Article number: 7752, doi:10.1038/ncomms8752

Chimera is a rich and fascinating class of self-organized solutions developed in high dimensional networks having non-local and symmetry breaking coupling features. Its accurate understanding is expected to bring important insight in many phenomena observed in complex spatio-temporal dynamics, from living systems, brain operation principles, and even turbulence in hydrodynamics. In this article we report on a powerful and highly controllable experiment based on optoelectronic delayed feedback applied to a wavelength tunable semiconductor laser, with which a wide variety of Chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher order Chimeras as a pattern transition from N to N-1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how Chimera is gradually destroyed on the way to apparent turbulence-like system behaviour.

Chimera states on the route from coherence to rotating waves

P. Jaros, Yu. Maistrenko, and T. Kapitaniak
Physical Review E 91, 022907 (2015), doi:10.1103/PhysRevE.91.022907

We report different types of chimera states in the Kuramoto model with inertia. They arise on the route from coherence, via so-called solitary states, to the rotating waves. We identify the wide region in parameter space, in which a different type of chimera state, i.e., the imperfect chimera state, which is characterized by a certain number of oscillators that have escaped from the synchronized chimera’s cluster, appears. We describe a mechanism for the creation of chimera states via the appearance of the solitary states. Our findings reveal that imperfect chimera states represent characteristic spatiotemporal patterns at the transition from coherence to incoherence

Different types of chimera states: An interplay between spatial and dynamical chaos

Dudkowski D, Maistrenko Yu., and Kapitaniak T.
Physical Review E 90, 032920 (2014).

We discuss the occurrence of chimera states in networks of nonlocally coupled bistable oscillators, in which individual subsystems are characterized by the coexistence of regular (a fixed point or a limit cycle) and chaotic attractors. By analyzing the dependence of the network dynamics on the range and strength of coupling, we identify parameter regions for various chimera states, which are characterized by different types of chaotic behavior at the incoherent interval. Besides previously observed chimeras with space-temporal and spatial chaos in the incoherent intervals we observe another type of chimera state in which the incoherent interval is characterized by a central interval with standard space-temporal chaos and two narrow side intervals with spatial chaos. Our findings for the maps as well as for time-continuous van der Pol–Duffing’s oscillators reveal that this type of chimera states represents characteristic spatiotemporal patterns at the transition from coherence to incoherence.

Imperfect chimera states for coupled pendula

Kapitaniak T., Kuzma P., Wojewoda J., Czolczynski K., and Maistrenko Yu.
Scientific Reports, 4, 6379 (2014)

The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a certain number of oscillators which escape from the synchronized chimera’s cluster or behave differently than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton’s laws that are ubiquitous in many physical and engineering systems.

Cascades of Multi-headed Chimera States for Coupled Phase Oscillators

Maistrenko Yu., Vasylenko A., Sudakov O., Levchenko R., Maistrenko V. [2014]
International Journal of Bifurcation and Chaos
in Applied Sciences and Engineering
Volume 24, Issue 08, 1440014, August 2014 DOI: 10.1142/S0218127414400148

Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of co-existing coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth:
1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER,
2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and
3) via homoclinic transition with complex multistable dynamics including an "eight-like" limit cycle resulting eventually in a chimera state.

Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions

Yuri Maistrenko, Bogdan Penkovsky, and Michael Rosenblum
Phys. Rev. E 89, 060901(R), (2014)

We discuss the desynchronization transition in networks of globally coupled identical oscillators with attractive and repulsive interactions. We show that, if attractive and repulsive groups act in antiphase or close to that, a solitary state emerges with a single repulsive oscillator split up from the others fully synchronized. With further increase of the repulsing strength, the synchronized cluster becomes fuzzy and the dynamics is given by a variety of stationary states with zero common forcing. Intriguingly, solitary states represent the natural link between coherence and incoherence. The phenomenon is described analytically for phase oscillators with sine coupling and demonstrated numerically for more general amplitude models.

URL: DOI: 10.1103/PhysRevE.89.060901

Three-Dimentional Chimera States

Volodymyr Maistrenko, Oleksandr Sudakov, Yuri Maistrenko

In this contribution, we report the first observation of three-dimensional chimera states of the following types:
incoherent steaks, incoherent ball, and incoherent tubes (Fig.1)
to compare the phenomenon with laminar-turbulent patterns in fluid.